It is very important to know why we can cancel the $3 y$ out of $\frac{3 y x}{3 y}$ to yield x but we cannot cancel the $3 y$ out of $\frac{3 y+x}{3 y}$.

The reason is because $3 y$ is a common factor (between the top and bottom) in $\frac{3 y x}{3 y}$ and so we really have $\frac{3 y x}{3 y}=\frac{(3 y) x}{(3 y)}=\frac{3 y}{3 y} * x=1 * x=x$.
Notice the $3 y$ divided by itself is equal to 1 and therefore cancels out. (Remember any number divided by itself is 1 . And $3 y$ is just some number.)

This is not the case with $\frac{3 y+x}{3 y}$. The $3 y$ is just a term on the top, because it's being added to something else. The $3 y$ is a common term (between the top and bottom) and does not cancel out the way a common factor would.

To further examine this idea, plug numbers in for x and y to illustrate that $\frac{3 y x}{3 y}=x$ and that $\frac{3 y+x}{3 y} \neq x$. Label and circle your values for x and y as well as your values for $\frac{3 y x}{3 y}$ and $\frac{3 y+x}{3 y}$.

The language is important. Factors are things we are multiplying together, like $3, y$, and x in $3 y x$. Terms are things we are adding, like $3 y$ and x in $3 y+x$. I will use these words a great deal. Your life will be easier if you remember what they mean.

